Writing your first plug-in for SMath Studio Desktop in C#

[rev.2 | 2018.01.13 | SS 2 0.98.6356]

SMath Studio desktop provides the possibility to write plug-ins to extend program's features. The simplest feature
you can think to add in the program is probably a function, and this is what we will do step-by-step in this tutorial.

First of all, we have to decide our goal. In this plug-in, we will try to create a combinations function that achieves
what is shown below:

n |

c k)yi=z—c——"—
(2, %) (k1)-(n—k)!
C(5,3)=10
C(3 ,5):! lastError="Factorial is defined for real numbers and zero."

The finished function syntax will be in the form: combin(n, k)=1

This tutorial as well as the complete plug-in code can be found in the public SVN repository of SMath Studio:
https://smath.info/svn/public/plugins/Tutorials/C#/CombinFunction/

Regquirements

To accomplish our task we need an IDE (Integrated Development Environment); you can use the one you want, in
this example we will use Visual Studio Community 2015 (you can download it for free on the official website
https://www.visualstudio.com/vs/)

The second requirement is to have SMath Studio on your system.

Let's start!

1. Once Visual Studio is installed, open it and click on File = New Start Page & X
Project from the main menu or Start = New Project from the Start Page

Visual Studio

IMPORTANT

Be sure to save your project periodically as you work on this tutorial!

2. In the New Project dialog, choose .NET Framework 2.0, then navigate to Templates = Visual C# =
Windows = Class Library and type the name for this project.
In this case, we choose CombinFunction. Once all is done, click on OK.

MNew Project @

I Recent NET Framewaork 2.0 = Sort by: Default

4 Installed c#) » Twpes Visual C#
| | Win orms Application Visual C# N
4 Templates A project for creating a C# class library

. cs - - i (
| C# E Console Application Visual C# el
i Windows

ce
J Shared Project Visual C#

C#
..E[:i! Class Library (Portable for Android and Windows) Visual C#

-Platform
. i
lity Eﬁ:i! Class Library Visual C#

SharePoint

Worlflow
i Other Languages
i Other Project Types

Samples

I Online

MName: CombiinFunction

Location: lath Studio Projec A -

Solution name: CombiinFunction Create directory

[] Create new Git repository

3. Now make the Solution Explorer visible (if it is not visible already) by clicking on View = Solution Explorer

File Edit View Project Build Debug Team Tools T
o - €* Code F7

m Solution Explorer Ctrl+W, 5

R

Solution Expl

4. In the Solution Explorer, right-click the project name and click Unload Project.

Solution Explorer -

T

#, —
Gt ®- S

fa] Solution 'CombinFunction' (1 project)
] CombinFunction)
b Properties ksl Build
[=B References Rebuild
P c# Classl.cs Clean
View
Analyze
Scope to This
Mew Solution Explorer View
Add
Manage NuGet Packages...
Set as StartUp Project
Debug

Initialize Interactive with Project

Cut

Remowve

Rename

Unload Project k

Open Folder in File Explorer

Properties Alt+Enter

fa] Solution 'CombinFunction' (0 projects)
b [y CombinFunction (unavailable)]
Reload Project
Edit CombinFunction.csproj k‘

Cut

Remowve

6. The project file will be opened. Scroll down to the first <ltemGroup> tag and add the following code above it:

<PropertyGroup>
<!-- Release -> SMath Release Manager -->
<SMathDir Condition=" '$ (SMathDir)' == '' AND '$(Configuration)' == 'Release'
">..\..\..\Main\SMathStudio\canvas\bin\Debug</SMathDir>
<!-- Debug -> development -->
<SMathDir Condition=" '$ (SMathDir)' == '' AND '$(Configuration)' == 'Debug'
">C:\Program Files (x86)\SMath Studio</SMathDir>
</PropertyGroup>

| hint: you can copy-paste the code from these greyed areas|

These lines of code will allow you to have a plug-in ready to be shared with the community, and they let you to
compile the plug-in in Debug mode on your machine. If is not in your purposes to share the plugin, you can
even use the code below instead.

<PropertyGroup>
<SMathDir Condition=" '$ (SMathDir)' == '' ">C:\Program Files (x86)\SMath

Studio</SMathDir>

</PropertyGroup>

"C:\Program Files (x86)\SMath Studio" is obviously the path of SMath Studio on your system (you have to
change it if different).

Under the previous code, add the following code:

<ItemGroup>
<Reference Include="SMath.Controls">
<HintPath>$ (SMathDir) \SMath.Controls.dll</HintPath>
<Private>False</Private>
</Reference>
<Reference Include="SMath.Manager">
<HintPath>$ (SMathDir) \SMath.Manager.dl1l</HintPath>
<Private>False</Private>
</Reference>
<Reference Include="SMath.Math.Numeric">
<HintPath>$ (SMathDir) \SMath.Math.Numeric.dl1l</HintPath>
<Private>False</Private>
</Reference>
<Reference Include="SMath.Math.Symbolic">
<HintPath>$ (SMathDir) \SMath.Math.Symbolic.dl1</HintPath>
<Private>False</Private>
</Reference>
</ItemGroup>

This will ensure that the most recent APIs of SMath Studio available on your system will be loaded once you
open and compile the project.

Once done, you should see something like in this screenshot. The yellow vertical bar shows the lines of code
where there are changes respect to the last save; color becomes olive green after saving to show lines edited
since the begin of the session.

r Condition

~ Condition

Mumeric.dll

Include="Cla

7. Save it, then go back to Solution Explorer window, right-click on the project name and then on Reload Project.
Confirm on the dialog that ask you if you to close all the files, if it is prompted.

Solution Explorer -

Save All (Ctrl+5hift+5]

fa] Solution 'CombinFunction' (0 projects)
b [y CombinFunction (unavailable)

k Reload Project

¢ Edit CombinFunction.vbproj
.#_. Cut

2 Remove

If all is gone right, you will see that now the SMath Studio BRI
assemblies are loaded in your project (in the Solution
Explorer expand the References item)
Now everything is ready to start coding! 3] Solution 'CombinFunction' (1 project)
4 CombinFunction
b Properties
4 B References
& Analyzers
Shath.Controls
SMath.Manager
Shath.Math.Mumeric
SMath.Math.5ymbolic

[P c# Classl.cs

8. In the Solution Explorer double-click on Class1.cs

9. In the editing window, above the class definition, type in the following: NeFEER=SaE=RS"s
[*B] CombinFuncti

using SMath.Manager; -
using SMath.Math;

10. Within the class definition type the following:

IPluginHandleEvaluation

then click on the light bulb and choose Implement = combinFunction

interface. ’ - 4 Class1l : DTPluginHandleEvaluat
this will automatically insert an interface (with the interface T R = = r
members) that must be implemented in the class (see Implement interface L

endnote 1) Implement interface with Dispose pattern

11. Next, type in the following:

CombinFunction

AssemblyInfo[] assemblyInfos; public ¢ (: IPluginHandleEvaluation

assemblyInfos;

12. Then scroll down the page and find the following subroutine:

Initialize{)

Replace the exception code with this:

this.assemblyInfos = new|]

{

new AssemblyInfo ("SMath Studio", new Version (0, 98), new
Guid("a37cba83-b69c-4c71-9992-55ff666763bd"))
}i

pid Imitialize()

This is required in any plug-in made for SMath Studio.

- The 2nd argument represents the version number of Smath for which you are developing this plug-in. So if
you are developing for SMath version 0.98, you insert 98. If the version you are targeting is different, enter the
appropriate number.

- The 3rd argument will be the same for any plug-in, never change it!

13. Now scroll the code to the following subroutine:

lyInfo[] Dependences

type in the following within the get block (see endnote 2):

return this.assemblyInfos;

o[] pependences

.assemblyInfos;

14. Now scroll the code to the following method:

ermInfo[] GetTermsHandled(S nProfile sessionProfile)

NotImplemente

replace the content with the following:

return newl]

{
new TermInfo ("combin", TermType.Function, " (n, k) - returns the number
of subsets (combinations) of k elements that can be formed from n elements.",

FunctionSections.Unknown, true)

}i

ionProfile)

ombin™, TermType.Function, "(n, k) - returns the number of subse

This allows SMath Studio (and the user) to know several things about your function:

- The 1st argument, "combin", is the function name to use inside the worksheets;

- The 2nd argument, TermType.Function, is the type of object combin; we'll see it again later;

- The 3rd argument, "(n, k) - Returns...", is the description available in the dynamic assistance;

- The 4th argument, FunctionSections.Unknown, is used to group functions by categories (CTRL+E in SS);
- The 5th argument, true, is to display the function in the dynamic assistance (use false to hide it).

15. Now scroll to the top and add another interface:

IPluginLowLevelEvaluationFast

to doit, add a comma after the first interface and type the new one, then implement his members (light bulb)

EvaluationFast

ry walue, Store context, out Entry

type in the following conditional If statement:

if (value.Type == TermType.Function && value.ArgsCount == 2 && value.Text
== "combin")

{

- bool TryEvaluatebExpression{Entry wvalue, Store context, out Entry result)

rmType. Function && value.ArgsCount == 2 &% value.Text == "c

that means "if what is being processing is my function, then do something"

17. Now type in the following within the /f block:

Term|]

context) .ToTermsList () .

Term|]

context) .ToTermsList () .

- bool TryEvaluateExpression({En

argl = Decision.Preprocessing(value.Items[0],

ToArray () ;
arg2 = Decision.Preprocessing(value.Items[1],
ToArray () ;

v value, context, out Entry result)

TermType.Function &% value.ArgsCount == 2 && wvalue.Tex

These preprocessing steps are needed to correctly prepare the arguments. This means that all possible
substitutions will be performed.

18. Next, type the following:

List<Term> answer =

if (value.Type

new List<Term> () ;

= TermType.Function && value.ArgsCount == 2 &% value.Text == "

De n.Preprocessing(value.Items[8], context).ToTermsList().ToArray(}

Preprocessing(value.Items[1], context).ToTermsList().ToArray(

m> answer = new L

This will prepare a container for the answer, made by Terms; these are the low-level units to build math
from within the plug-ins. To create the answer, we have to compose an expression array formed in
Reverse Polish Notation (see endnote 3). The mathematical expression is:

n!

(xD-((n=x)!)

it can be expressed in RPN as:

ntk!nk-!*/

Thus, type in the following lines to compose the list of terms in RPN:

answer.
answer.
answer.
answer.
answer.
.AddRange (arg2) ;

answer

answer.

answer

answer.

answer

.Add (new Term (Operators.

.Add (new Term (Operators.

AddRange (argl) ;
Add (new Term (Operators.
AddRange (arg?2) ;
Add (new Term (Operators.
AddRange (argl) ;

Factorial, TermType.Operator, 1));

Factorial, TermType.Operator, 1));

2)) 7
1))
TermType.Operator,
2)) 7

Add (new Term (Operators.Subtraction, TermType.Operator,

Factorial, TermType.Operator,

((
Add (new Term (Operators.Multiplication, 2)) g
((

Division, TermType.Operator,

(TErM> ansWer = Me
-Addrange(argl)

.Add(

ew Ter

z.Factorial, TermType.Operator, 1}});

z.Factorial, TermType.Operator, 1}});

subtraction, TermType.Operator,
Factorial, TermType.Operator,
Multiplication, TermType.Opera
Division, TermType.Operator, 2));

» 23);

L 1 N O 1 | N1

._”‘._:’

A B

19. To finish up the function, type the following right below our List:

result = Entry.Create (answer);
return true;

z.Division, TermType.Operator, 2}};

This will returns the result and that the function we were looking for is found.

A result is needed even to know if this is not the plug-in that handle the function in evaluation:
TryEvaluateExpression{Entry walue, Store context, Entry result)
{value.Type == TermType.Function && value.ArgsCount == 2 &% value.Text == "
m[] argl "y [ing(value.Items[8], context).ToTermsList().ToaArray(};
m[] arg2 ms[1], context).ToTermsList().ToArray()
Term» answer
-Addrange(ar|
Add(Te z.Factorial, TermType.Operator, 1}});
aAddrange{arg
Add(Ter ors.Factorial, TermType.Operator, 1});
Addrange(argl);
Addrange(arg2);
Add(subtraction, TermType.Operator
Add(Factorial, TermType.Operator,
Add(Multiplication, TermType.Operat
Add(f z.Division, TermType.Operator, 2});

ntry.Create{answer);

20. The math is done. Now we have to check if the setup of the plug-in is complete; go in the Solution Explorer and
select Show All Files (if not yet selected).

Solution Explorer
@ ©-5¢aR © K-
L Show Al Files

Navigate to Properties = Assemblylnfo.cs, double-click on this file.

fa] Solution 'CombinFunction' (1 project)
4 CombinFunction
4 ¢ Properties
4 Ascemblylnfo.cs
[=B References

. . [c* Classl.cs
21. Now we can edit some attributes:

22. There should be a Guid attribute; if not, you must add it. Every plug-in must have a different one.
It is the identifier of your plug-in, and it is used to save the dependency when you use combin() in a worksheet.
Remember: there are many like it, but this one is your .

IMPORTANT

rsProperties

23. Last thing here is the version. Add an asterisk for the build and revision numbers of the AssemblyVersion, so
you will have always a new progressive version every time you will compile the plug-in. AssemblyFileVersion, if
available, can be safely removed (otherwise you have to update it manually).

24. Before testing, we have to open again the project file, as shown in point 4. Once done, go above the </Project>
closing tag in the last line and paste the following:

<!-- copy anything from the build path to the SMath Studio extension path -->
<Target Name="AfterBuild" Condition=" '$ (Configuration)' == 'Debug' ">
<GetAssemblyIdentity AssemblyFiles="$ (TargetPath)">
<Output TaskParameter="Assemblies" ItemName="AssemblyInfo" />
</GetAssemblyIdentity>
<GetAssemblyldentity AssemblyFiles="$ (SMathDir)\SMath.Manager.dl1">
<Output TaskParameter="Assemblies" ItemName="ProgramInfo" />
</GetAssemblyIdentity>

<PropertyGroup>
<ProgramVersion>% (ProgramInfo.Version)</ProgramVersion>
<ConfigFileName>config.$ (ProgramVersion.Replace(".", " ")) .ini</ConfigFileName>
<!-- SS portable -->

<PluginPath Condition=" Exists('$ (SMathDir)\portable.version')

">S$ (SMathDir) \extensions\plugins\$ (ProjectGuid.TrimStart ("{").TrimEnd("}"))</PluginPath>
<!-- SS from installer -->
<PluginPath Condition=" '$ (PluginPath)' == "''

">S$ (APPDATA) \SMath\extensions\plugins\$ (ProjectGuid.TrimStart ("{") .TrimEnd("}"))</Plugin

Path>
</PropertyGroup>
<ItemGroup>
<BuildFiles Include="$ (TargetDir)*.*" />
<ConfigFileContent Include="% (AssemblyInfo.Version)" />
<!-- extension status (0: enabled; 2: disabled; 1: removed) -->
<ConfigFileContent Include="0" />
</ItemGroup>
<!-- uncomment line below to keep clean the extension directory -->
<!-- <RemoveDir Condition="'$ (Configuration)' == 'Debug'"
Directories="$ (PluginPath)"/> -->
<Copy SourceFiles="@ (BuildFiles)"
DestinationFolder="$ (PluginPath) \% (AssemblyInfo.Version)" ContinueOnError="false" />
<WriteLinesToFile File="$ (PluginPath)\$ (ConfigFileName)"

Lines="@ (ConfigFileContent)" Overwrite="true" />
</Target>

Name="AfterBuild"” Condition '$(Configuration)' == "Debug
1yI $(TargetPa
ItemName

$(sMathDir)’

ItemName

ey

— A

1t Include="@

wurceFiles="@(BuildFiles)" DestinationFolder="%({PluginPath}\%(
e File="%(PluginPath)\$(ConfigFileName)}" Lines ConfigFileContent)

This makes possible to deploy automatically all the build files in the proper directory.
for SMath Studio installed
for SMath Studio portable

| %APPDATA%\Roaming\SMath\extensions\plugins\{GUID}\{version} |

| {SMathPath}\Extenions\plugins\{GUID}\{version} |

Save it, then go back to Solution Explorer window, right-click on the project name and then on Reload Project.
Confirm on the dialog that ask you if you to close all the files, if it is prompted.

25. Time to test! In the Solution Explorer, right-click the solution name and click on Rebuild.

fa] Solution 'CombinFunction' (1 project)
4 CombinFunction

b Properties i Build
[+ =W References Rebuild k‘

'y ci C C
P o Classl.cs Clean

26. Now run SMath Studio, then click on Tools = Plugins...

Tools | Pages Help

|'i:-,1, Plugins... 1
7 b
Snippet Manager...

24, Options...

In the Quick search field, we search for combin; we'll see that our plugin is loaded and enabled!

Extensions Manager

#% SMath Studio :
= Plugins

& Handbooks

=

= Local
L= storage

10619918589

D Exaplos Combinations Function
[Interactive books g gﬁ&m;mmm realization:
I+, Plugins
f‘:‘i Applications
Snippets
ES Translations

Cuick search: combin

27. Is our function loaded too? Go to Insert = Function... or click the Function symbol on the Toolbar .

EI'%;:‘ || Insert | Calculation Tools Pages
R T Matrix... CTRL+M |

|Fun|:ti|3nl |fx Function... M, CTRL+E |

Las™

In the Function's name list, type ¢ and scroll down
to find our combin function; the description is the
one we have defined at point 12. Since at that
point we haven't provided the number of the
arguments, it is shown with three points (undefined
number of arguments) but only if we will use 2
arguments the function will works (because we

i

Inzert - Function @

Categony Function's name
| (C-i -
Matrix and vector cintermp
Complex numbers Clear
Trigonometric col
Hyperbalic cols
Programming lcombin]
Strings concat
Files Conjugate e
Bxample

combin Iia rg 1]

Description

combin(...) - {n, k) - Retums the number of subsets (combinations) of -«
k elements that can be formed from n elements.

))) X [Ingert] [Cancel
have defined this behavior at point 16).
If you type combin on the canvas (with Dynamic assistance enabled): Ew Insert _ Calculation
+ | Grid

combin| ' Printing bounds |

Iz} a [lcombinl..] - [n, k] - retumns the -

/7 concat number of subsetz [combinationsz] of R U

. . k elementz that can be formed from Debugager window

JCDI:J_ug&tE n elements. -

i Lombinalions Funcied « | Dynamic assistance

¥ cos ¥ |[Fresz TAE to incert |

Always on top

Press TAB and test it. If the result is like in the screenshot below, you have successfully created your first plug-in!

combin (5, 3]=10

r

combin (3, 5)=u

Factorial iz defined for real numbers
and zero.

If you go back at point 14, we can use this to force a 2 arguments function on TAB key press

return newl]

{

new TermInfo ("combin", TermType.Function, " (n, k) - returns the number
of subsets (combinations) of k elements that can be formed from n elements.",
FunctionSections.Unknown, true, new ArgumentInfo (ArgumentSections.RealNumber), new

ArgumentInfo (ArgumentSections.RealNumber))
}i

Once applied, both the number and the type of
arguments are shown to the user, and TAB will
provide a 2 arguments function.

cr:urul:uin|
g [combidl 1 :rumber, "2 nurmberl| - [n.
/7 congat k] - retunz the number of subsets
(7 Conjuzate [combinations] of k elements that

_ can be formed from f elements.
[} contirme Combinations Funation
¥ cos ¥ |[Fresz TAE to inzert |

28. However, in the real world, we seldom get by without making mistakes from time-to-time. Let’'s now show how
to debug our plug-in. Typically, you would debug your application before doing steps 24 through 27 that were
outlined above. Debugging an application add-in with Visual Studio Community appears to not be as

straightforward as in the professional versions of Visual Studio. But below is a workaround that seems to work.

First, we have to open again the project file, as shown in point 4. Once done, under the <PropertyGroup> we
have added previously, we can add the following lines:
<PropertyGroup Condition=" 'S$ (Configuration) |$(Platform)' == 'Debug|AnyCPU' ">
<StartAction>Program</StartAction>

<StartProgram>$ (SMathDir) \SMathStudio Desktop.exe</StartProgram>
</PropertyGroup>

~ Condition

$(Configuration}’

~ Condition

Save it, then go back to Solution Explorer window, right-click on the project name and then on Reload Project.
Confirm on the dialog that ask you if you to close all the files, if it is prompted.

29. Within Visual Basic, set a breakpoint at a convenient location. Simply place your cursor in the line at which
you wish to set the breakpoint and click on Debug = Toggle Breakpoint as shown below:

blic bool TryEvaluatebExpression{Entry walue, Store context, out Entry result)
i
* if (value.Type == TermType.Function °% »=7wm Amecrooed — =z s
{ @ Quick Actions and Refactorings...
Term[] argl 1. Preproces .
Term[] arg2 .Freproces Rename...
Organize Usings
(TErM> ansWer = Me
.AddrRange(argl) Create Unit Tests
LAdd(new Te ators
.AddRange({arg2); Insert Snippet... Ctrl+E, X
LAdd(new Te
-AddrRange(arg
-AddRange (arg2) Peek Definition Alt+F12

Surround With... Ctri+K, 5

Go To Definition F12

Go To Implementation Ctrl+F12

Find All References Ctrl+E, R
View Call Hierarchy Ctrl+E, Ctrl+T
Breakpoint

k RunTo Cursor Ctrl+F10

blic bool TryEvaluatebExpression{Entry walue, Store context, out Entry result)

if (value.Type =— TermType.Function && value.ArgsCount == 2 &% value.Text == "combin")

Term[] argl .Preprocessing({value.Items[@], context).ToTermsList().ToaArray()
Term[] arg2 n.Preprocessing(value. Items[1], context).ToTermsList().ToArray()
List<Term> answer = new List<Term>();

answer. Addrange(argl);

30. Start debugging. Click on Debug = Start Debugging or Start on the Visual Studio toolbar.

Debug Team Tools Test Drver Analyze Debug ~ AnyCPU

Windows
Graphics

Start Debugging

Start Without Debugging

When you do this, Visual Studio will automatically start up Smath Studio and pass the focus to SMath.
When this occurs, you must attempt to utilize the plug-in you have created for the purpose of debugging it.
In this case, we type in the following:

|combin(z, 5

As soon as the “=" is entered, if a breakpoint was set, control and screen focus will return to Visual Studio
where you can step through the code, watch variable values, and other debugging tasks.

See endnote 5 for some useful links on how to debug your applications within Visual Studio.

31. To stop debugging, click on Debug = Stop Debugging as shown below. When you do this, the instance of
SMath in which you tested your plug-in will close.

Debug Team Tools Test Driver Analyze Win

Windows

stop Debugging (Shift+F5)

Graphics

Continue

Stop Debugging Shift+F5

Detach All

32. Finally, when your plug-in is finished and bug free, you are ready to release it. This essentially involves
repeating step 25 above, with Release configuration.

To know how to release your plug-in to the community, please visit the following link:

http://en.smath.info/forum/yaf postst2399 Extensions-Manager.aspx

Probably you have noticed that the Visual Studio IntelliSense provides hints about methods and properties
available for the various namespaces; you can find a list of the featues available within the SMath Studio APls in
his Extensions Manager; go to Tools = Plugins... = Handbooks then choose Online gallery and search the
keyword core.

P

E&Bﬁum'ﬁanﬂgﬁt.
% SMath Studio

& Handbooks
D Examples SMath Studio Core documentation 2016.09.14 20

li Interactive books é g' bjixf::dza ;i-:rfﬁﬂaﬁm for SMath Studic Core libraries. e

i _-‘ Plugins

ﬁ Applications
Snippets

ES Translations

Quick search: core ITiﬂe v]

Dowrioad

Endnotes:
. Refer to: https://msdn.microsoft.com/en-us/library/ms173156.aspx
. Refer to: https://msdn.microsoft.com/en-us/library/ms228503.aspx
. For explanation of Reverse Polish notation refer to: http://en.wikipedia.org/wiki/Reverse_polish_notation
. Refer to: https://support.microsoft.com/en-us/kb/865219
. Here are some useful links about how to debug your applications within Visual Studio
- Informations on debugging in Visual Studio may be found at:
http://msdn.microsoft.com/en-us/library/kOk771bt%28v=VS.100%29.aspx
- Execution Control (stepping through your code):
http://msdn.microsoft.com/en-us/library/y740d9d3%28v=VS.100%29.aspx
- Breakpoint Overview:
http://msdn.microsoft.com/en-us/library/5557y8b4%28v=VS.100%29.aspx
- Viewing Data in the Debugger:
http://msdn.microsoft.com/en-us/library/esta7c62%28v=VS.100%29.aspx
- Edit and Continue:
http://msdn.microsoft.com/en-us/library/bcew296c%28v=VS.100%29.aspx

a b wWN -

